دانشجویان عزیز جهت استفاده از کتابهای زیر یک ایمیل به آدرس a.soltanmohammadi@yahoo.com بزنید و نام کتاب را ارسال کنید تا ما آن را برایتان ارسال کنیم
1. Stochastic Simulation and Monte Carlo Methods: Mathematical Foundations of Stochastic Simulation/Authors: Carl Graham, Denis Talay/2013 2. Beginning Python: From Novice to Professional/Magnus Lie Hetland/2008 3. Principles of Model Checking/Christel Baier/2008 4. Software Engineering - The Current Practice /2012 5. Introduction toSoftwareEngineering/ Ronald J. Leach/2016 6. Data Structures and Algorithms in C++/by Adam Drozdek /2012 7. Algorithms and theory of computation handbook/ Mikhail J Atallah/2010 8. Introduction to Numerical Analysis/1992 9. Applied linear statistical models/ John Neter/2004 10. Competitive Programmer's Handbook/ by Antti Laaksenon/2018 11. Applied liner regression: Computing Primer for Applied Linear Regression Using R/ Sanford Weisberg/2014 12. Data Classification: Algorithms and Applications / by Charu C. Aggarwal/2014 13. Data Structures and Algorithms in Java / by Michael T. Goodrich/2005 14. Data Structures and Algorithms Using C#/by Michael McMillan /2007 15. Data Structures & Algorithm Analysis in C++/by Mark A. Weiss / 2013 16. Data Structures and Algorithms in Java/by Michael T. Goodrich, Roberto Tamassia, et al/2014 17. Decision Making under Deep Uncertainty: From Theory to Practice/by Vincent A. W. J. Marchau, Warren E. Walker, et al. / 2019 18. Deep Learning for Natural Language Processing: Develop Deep Learning Models for your Natural Language Problems/ Author. Jason Brownlee/2017 19. Essentials of Stochastic Processes/ Rick Durrett/2011 20. Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms /by John D. Keller/2015 21. Stochastic Processes: Theory for Applications/by Robert G. Gallagher/2014 22. Generalized Linear Models/by P. McCullough (Author), John A. Nelder/1989 23. Handbook of Graph Theory, Combinatorial Optimization, and Algorithms/by Krishnaiyan “KT” Thulasiraman/2016 24. Introduction to Probability/by Charles M. Grin stead/2012 25. Introduction to Probability and Statistics for Engineers and Scientists/Author: Sheldon Ross/2004 26. Intuitive Probability and Random Processes using MATLAB/by Steven Kay /2005 27. Probability Theory: The Logic of Science/by E. T. Jayne’s and G. Larry Brett horst / 2003 28. Linear Models with R /by Julian J. Faraway /2014 29. Machine Learning: A Probabilistic Perspective Textbook/ by Kevin P. Murphy/2012 30. Fundamentals of Probability and Statistics for Engineers /by T. T. Soong/2007 31. Handbook of Data Structures and Applications/by Dinesh P. Mehta (Editor)/2004 32. Modern Actuarial Risk Theory Using R/ Authors: Kaas, R., Goovaerts, M., Dhaene, J., Denuit, M/2009 33. A Modern Introduction to Probability and Statistics: Understanding Why and How/Authors: Dekking, F.M., Kraaikamp, C., Lopuhaä, H.P., Meester, And L.E/2005 34. Natural Language Processing in Action: Understanding, analyzing, and generating text with Python/by y Hobson Lane (Author), Hannes Hapke (Author), Cole Howard (Author)/2019 35. Open Data Structures (in Java)/ Pat Morin/2013 36. Optimization Methods in Finance/ by Gérard Cornuéjols and Reha Tütüncü/2006 37. Optimization Models/ by Giuseppe C. Calafiore and Laurent El Ghaoui / 2014 38. Probability, Random Variables and Stochastic Processes/ By Athanasios Papoulis and S. Unnikrishna Pillai / 2002 39. Probability and mathematical statistics/Prasanna Sahoo/2013 40. Principles of Program Analysis/ by Flemming Nielson, Hanne R. Nielson, et al. /2005 41. Probability, Statistics, and Random Processes for Electrical Engineering /by Leon-Garcia Alberto / 2011 42. Probability and Statistics / by Michael J. Evans and Jeffrey S. Rosenthal/2009 43. Probability: Theory and Examples/Rick Durrett/2019 44. Relational data clustering algorithms with biomedical application/MOHAMMED A. KHALILIA/2014 45. Mathematical Statistics and Data Analysis /by John A. Rice / 2006 46. Mathematical Modeling and Statistical Methods for Risk Management/Henrik Hult and Filip Lindskog/2007 47. Schaum's Outline of Theory and Problems of Probability, Random Variables, and Random Processes/ Hwei P. Hsu/1997 48. Data Structures and Algorithms in Java /by Robert Lafore / 2002 49. Stochastic Calculus for Finance I: The Binomial Asset Pricing Model Solution of Exercise Problems/ Yan Zeng/ 2014 50. Simpler: Using R for Introductory Statistics/ John Verzani/2002 51. Understanding Complex Datasets: Data Mining with Matrix Decompositions / by David Skillicorn / 2007 52. SPSS for Intermediate Statistics: Use and Interpretation/by Nancy Leech, Karen Barrett, et al. / 2004 53. Stochastic Epidemic Models with Inference /by Tom Britton, Etienne Pardoux, et al. / 2019 54. Getting Started in Stock Analysis/by Michael C. Thomsett (Author)/2015 55. Student Solutions Manual to accompany Applied Linear Regression Models/ Michael H. Kutner/2004 56. Understanding Stocks / Michael Sincere/2004 57. Applied Statistics for Business and Economics/by Robert M. and Leekley / 2010 58. Fundamentals of Database Systems /by Ramez Elmasri and Shamkant B. Navathe /2010 59. Financing Social Protection/ by Michael Cichon (Author), Wolfgang Scholz (Author), Arthur van de Meerendonk (Author)/2005 60. Financial Institutions Management: A Risk Management Approach / by M. Cornett A. Saunders | 2007 61. Financial Production, Flows and Stocks in the System of National Accounts/2014 62. Catastrophe Modeling: A New Approach to Managing Risk /by Patricia Grossi and Howard Kunreuther / 2005 63. Stochastic Calculus and Financial Applications /by J. Michael Steele / 2000 64. Theory of Interest and Life Contingencies with Pension Applications: A Problem Solving Approach/by ASA Michael M. Parmenter/ 1999 65. Foundations of Computational Intelligence Volume 6: Data Mining/Editors: Abraham, A., And Hassanien/2009 66. A First Course in Probability /by Sheldon Ross / 2009 67. An Introduction to Market Risk Measurement /by Kevin Dowd /2002 68. Combinatorial Optimization: Theory and Algorithms/by Korte, Bernhard, Vygen, Jens/2006 69. Engineering Analysis with NX Advanced Simulation /by P. Goncharov (Author), I. Artamonov (Author), T. Khalitov (Author)/2014 70. Financial Risk Forecasting: The Theory and Practice of Forecasting Market Risk with Implementation in R and Matlab/by Jon Danielsson / 2011 71. Numerical Methods for Stochastic Partial Differential Equations with White Noise /by Zhongqiang Zhang and George Em Karniadakis / 2017 72. Neural Network Methods in Natural Language Processing /by Yoav Goldberg /2017 73. Parallel Processing and Parallel Algorithms: Theory and Computation/by Roosta, Seyed H/2000 74. Risk Management and Financial Institutions /by John C. Hull / 2015 75. Sparse Modeling: Theory, Algorithms, and Applications /by Irina Rish (Author), Genady Grabarnik (Author)/2014 76. Advanced and Multivariate Statistical Methods/by Craig A. Mertler and Rachel Vannatta Reinhart / 2016 77. An Introduction to Statistical Methods and Data Analysis/by R. Lyman Ott and Micheal T. Longnecker /2001 78. An Introduction to Statistical Methods and Data Analysis /by R. Lyman Ott and Micheal Longnecker / 2008 79. Statistics of Financial Markets: An Introduction/byFranke, Jürgen, Härdle, Wolfgang Karl, Hafner, Christian Matthias/2008 80. Statistical Data Analysis/by Glen Cowan/1998 81. Algorithmic and Programming: Training materials for Teachers/ Maria Christodoulou/2018 82. Probability and mathematical statistics/Sahoo, 2013 83. Mathematical Statistics with Applications/by Kandethody M. Ramachandran (Author), Chris P. Tsokos (Author)/2009 84. Quantitative Financial Economics: Stocks, Bonds and Foreign Exchange/By Keith Cuthbertson and Dirk Nitzsche /1996
|